A Jacobi-Type Method for Computing Orthogonal Tensor Decompositions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Jacobi-Type Method for Computing Orthogonal Tensor Decompositions

Abstract. Suppose A = (aijk) ∈ Rn×n×n is a three-way array or third-order tensor. Many of the powerful tools of linear algebra such as the singular value decomposition (SVD) do not, unfortunately, extend in a straightforward way to tensors of order three or higher. In the twodimensional case, the SVD is particularly illuminating, since it reduces a matrix to diagonal form. Although it is not po...

متن کامل

Orthogonal Tensor Decompositions

We explore the orthogonal decomposition of tensors (also known as multidimensional arrays or n-way arrays) using two different definitions of orthogonality. We present numerous examples to illustrate the difficulties in understanding such decompositions. We conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebr...

متن کامل

Estimates for Jacobi-sobolev Type Orthogonal Polynomials

Let the Sobolev-type inner product 〈f, g〉 = ∫

متن کامل

Regularized Orthogonal Tensor Decompositions for Multi-Relational Learning

Multi-relational learning has received lots of attention from researchers in various research communities. Most existing methods either suffer from superlinear per-iteration cost, or are sensitive to the given ranks. To address both issues, we propose a scalable core tensor trace norm Regularized Orthogonal Iteration Decomposition (ROID) method for full or incomplete tensor analytics, which can...

متن کامل

On a Pollaczek-Jacobi type orthogonal polynomials

We study a sequence of polynomials orthogonal with respect to a family weights w(x) := w(x, t) = e x(1− x) , t ≥ 0, over [−1, 1]. If t = 0, this reduces to a shifted Jacobi weight. Our ladder operator formalism and the associated compatibility conditions give an easy determination of the recurrence coefficients. For t > 0, the deformation term e−t/x induces an infinitely strong zero at x = 0. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2008

ISSN: 0895-4798,1095-7162

DOI: 10.1137/060655924